Spectral early warning signals improve tipping point detection and description

Thomas Bury^{1,2}, Chris T. Bauch¹, Madhur Anand²

¹Dept. Applied Mathematics, University of Waterloo

²School of Environmental Sciences, University of Guelph

Tipping Point

"any situation where accelerating change caused by a positive feedback drives the system to a new state."

Van Nes et al. What do you mean, 'tipping point? (2016)

Tipping Point

Motivation

Mathematical principles

- Positive feedback
- Alternate stable states
- Hysteresis

Thomas Bury

Early warning signals

- Statistical metrics to warn of an approaching transition

Scheffer et al. Early-warning signals for critical transitions (Nature, 2009)

Early warning signals

- A simple system for illustration

$$\dot{x} = \mu - x^2 + \sigma \epsilon(t)$$

 $x^* = \sqrt{\mu}$

Stable state

 $y = x - x^*$ Residual dynamics about stable state...

satisfy $\dot{y} = -2\sqrt{\mu}y + \sigma\epsilon(t) + O(y^2)$

Upon linearization

 $\dot{y} = \lambda y + \sigma \epsilon(t)$

an Ornstein-Uhlenbeck Process

Normal form of the Fold bifurcation

Early warning signals

$$\dot{y} = \lambda y + \sigma \epsilon(t)$$

- The Ornstein Uhlenbeck Process has well-known statistical properties (e.g Gardiner 1985)

$$\operatorname{Var}(y) = \frac{\sigma^2}{2|\lambda|} \longrightarrow \infty \quad \text{as} \quad |\lambda| \to 0$$
$$\phi_y(\tau) = e^{-|\lambda|\tau} \longrightarrow 1 \quad \text{as} \quad |\lambda| \to 0$$

Gardiner, Handbook of stochastic methods (1985)

Early warning signals – in action

Early warning signals - observations

Microbial Experiments

Paleoclimate records

However, bifurcations come in many flavours

Kefi et al. Early warning signals also precede non-catastrophic transitions. Wiley (2013)

Analytical forms preceding each normal form bifurcation

Discrete-time

Bifurcation	Dominant eigenvalue(s)	Variance	Lag- τ AC, $\rho(\tau)$	Power Spectrum, $S(\omega)$
Fold, Transcritical, Pitchfork	$\lambda \in \mathbb{R}, \lambda \to 0^-$	$-rac{\sigma^2}{2\lambda}$	$e^{\lambda au }$	$rac{\sigma^2}{2\pi}\left(rac{1}{\omega^2+\lambda^2} ight)$
Hopf (super/sub-critical)	$\lambda_{1,2} = \mu \pm i \omega_0, \mu \to 0^-$	$-rac{\sigma_1^2}{2\mu}$	$e^{\mu \tau }\cos\omega_0\tau$	$rac{\sigma_1^2}{4\pi}\left(rac{1}{(\omega-\omega_0)^2+\mu^2}+rac{1}{(\omega+\omega_0)^2+\mu^2} ight)$
Fold, Transcritical, Pitchfork	$\lambda \in \mathbb{R}, \lambda \to 1^-$	$\frac{\sigma^2}{1-\lambda^2}$	$\lambda^{ au }$	$\frac{\sigma^2}{2\pi} \left(\frac{1}{1 + \lambda^2 - 2\lambda \cos(\omega)} \right)$
Flip	$\lambda \in \mathbb{R}, \lambda \to -1^+$	$rac{\sigma^2}{1-\lambda^2}$	$\lambda^{ au }$	$rac{\sigma^2}{2\pi}\left(rac{1}{1+\lambda^2-2\lambda\cos(\omega)} ight)$
Neimark-Sacker	$\lambda_{1,2} = r e^{\pm i\theta}, r \to 1^-$	$\tfrac{\sigma_1^2}{1\!-\!r^2}$	$r^{ \tau }\cos(\theta\tau)$	$\frac{\sigma_1^2}{4\pi} \left(\frac{1}{1+r^2 - 2r\cos(\omega - \theta)} + \frac{1}{1+r^2 - 2r\cos(\omega + \theta)} \right)$

Wiesenfeld, Noisy precursors of nonlinear instabilities (1985)
 Kuehn, A mathematical framework for critical transitions: normal forms, variance and applications (2013)
 O'Regan et al, How Stochasticity Influences Leading Indicators of Critical Transitions (2018)

Interesting differences among bifurcations

E.g Hopf vs. Fold bifurcation

Harnessing information in the power spectrum

1. The shape: Fit analytical forms

$$S_{\text{Null}}(\omega) = \frac{\sigma^2}{2\pi} \qquad S_{\text{Fold}}(\omega) = \frac{\sigma^2}{2\pi} \frac{1}{\omega^2 + \lambda^2} \qquad S_{\text{Hopf}}(\omega) = \frac{\sigma^2}{2\pi} \frac{1}{2} \left\{ \frac{1}{(\omega + \omega_0)^2 + \mu^2} + \frac{1}{(\omega - \omega_0)^2 + \mu^2} \right\}$$

to the measured power spectrum, and compute AIC weights

 $w_{
m null}$ $w_{
m fold}$ $w_{
m hopf}$

which measure goodness of fit.

Thomas Bury

Spectral early warning signals

12/20

Information in the power spectrum

2: The maximum power

When d is halved, Var increases two-fold, whereas Smax increases 4-fold.

Together: Smax detects change in bifurcation proximity, AIC weights detect bifurcation class.

Thomas Bury

Ricker-type population model

$$N_{t+1} = N_t e^{(r_t(1-N_t/K)+\sigma\epsilon_t)} - F \frac{N_t^2}{N_t^2 + h^2}$$

Ricker. Stock and recruitment Journal of the Fisheries Board of Canada (1954)

Thomas Bury

- Unimodal power spectrum
- Variance fails to provide a signal
- Smax provides a signal
- AC provides a signal with delayed response at higher lags
- AIC weights faithfully classify bifurcation

- Bimodal power spectrum – dominant frequency π
- Smax provides a slightly stronger signal than variance
- AC trend depends on lag time
- AIC weights faithfully classify bifurcation

Empirical predator-prey system

Fussmann et al. Crossing the Hopf bifurcation in a live predator-prey system. Science (2000)

- Chemostat setup with twospecies predator prey system
- Run at various dilution rates δ
- Parametrise model with data

$$\frac{dN}{dt} = \delta(N_i - N) - F_C(N)$$
$$\frac{dC}{dt} = F_C(N)C - F_B(C)B/\epsilon - \delta C$$
$$\frac{dR}{dt} = F_B(C)R - (\delta + m + \lambda)R$$
$$\frac{dB}{dt} = F_B(C)R - (\delta + m)B$$

Nitrogen (nutrient) Chlorella vulgaris (prey) Brachionus calyciflorus (predator)

Empirical predator-prey system

- Smax and variance both provide a signal prior to the bifurcations
- Hopf AIC weight is dominant indicating the type of transition
- Dominant frequency in power spectrum w=1/3 gives T ≈20 days, as observed in oscillatory regime

Conclusions

- Stochasticity offers information noise can be useful
- Current EWS are not specific to the type of bifurcation that is approaching
- Spectral EWS
 - 1. provide information on whether the bifurcation is oscillatory (Hopf/Flip/Neimarck-Sacker)
 - 2. are more sensitive to changes in bifurcation proximity
- All tools developed are available as a Python package.

How can stochasticity be harnessed in your field?

Thank you!