Examples 4:
Limits and Continuity

October 10, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.*

1 Limits
e Solve limit problems using standard limit rules.
e Solve limit problems using the definition of a limit
e Practise applying the Squeeze Theorem

e Investigate existence of limits for piecewise functions

*Created by Thomas Bury - please send comments or corrections to tbury@uuwaterloo.ca
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Example 1.1 - true / false statements

Warm up with the following true / false statements

(a) If f is continuous at a,

lim f(z) = f(a) (1.1)
(b) The limit
1
nh_}ngo = 0 (1.2)
for any p € R.
(¢) The limit
xli)rgo <sin2(\/5) + COSQ(\/E)) (1.3)
does not exist.
(d) Suppose
g(x),h(x) =5 as x — o0 (1.4)
and  g(z) < f(2) < h(z) (1.5)
Then
xlgglo flz)=5 (1.6)

(a) True. This is very useful, since it tells us that when evaluating the limit of a function at a point where
it 1s continuous, we may just plug the value in. For example

2
.t +3 443
L 7)
(b) False. This limit is only satisfied for p > 0. Note that
0 p>0
nh_)rgoﬁ: 1 p=0 (1.8)
oo p<0
(c) False. Since
sin?(f(x)) + cos?(f(x)) =1 (1.9)

for any function f(z). Any limit of a constant is just itself, so in this case the limit is 1.

(d) True. This is an example of the Squeeze Theorem.
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Example 1.2 - Limits with an "indeterminate form"

Evaluate the following limits

(a)
lim —————— (1.10)

(b)
lim V2?2 + 2z —x (1.11)

(a) Upon substituting 3 into the expression we see this limit has the indeterminate form ”0/0”. Rewriting
the function, we have
2
—2x—3 -3 1
x x _ (@=3)(=+1) (1.12)
Tz —3 z—3
=z+1 provided that x # 3 (1.13)

Note in taking the limit we get arbitrarily close to x = 3 but never actually attain it, hence we may

cancel the factors of (z — 3). Finally,
limz+1=4 (1.14)

z—3

(b) This has the indeterminate form "oo — o0". We get around this by converting the expression into a

ratio:
Vit 2m g VBBV + e+ T) (1.15)
Va2 + 2z +x '
2
= ﬁ multiply out numerator (1.16)
2
=7 divide by highest power (1.17)
1+241
Now the limit is fairly simple
2 2
lim (1.18)

= :]_
T—00 1+%+1 ﬁ.}.l
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Example 1.3 - Application of the Squeeze Theorem
Evaluate the following limits
(a)
lim e % sin x (1.19)
T—00
(b) 1
lim 2%e(z) (1.20)
z—0
(a) We use the fact that sinx is bounded:
—1<sinz <1 (1.21)
= e 0 < o0 TG < O since e %1% > 0 1.22)
Now
lim —e %1% = lim e %1% =0 (1.23)
T—r 00 Tr—00
and so by the Squeeze Theorem we must have
lim e ! gsinz =0 (1.24)

T—r00

(This represents an oscillation with exponentially decaying amplitude)
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(b) Now use the fact that cos(1/x) is bounded:

—1<cos(l/z) <1 (1.25)
= el<e™l) <e (since €” is an increasing function we may do this) (1.26)
= 22! < 22 < 2% (1.27)
The outside limits are
lim 2%~} = lim z%e = 0 (1.28)
z—0 z—0

and so by the Squeeze Theorem,
lim 22e°5() = 0 (1.29)
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Example 1.4 - Limits from first principles
Prove the following, using the definition of a limit
(@ 2
. n°+1
nIL%o poai 1 (1.30)
(b)
lim(3z — 1) =5 (1.31)
T—2
(a) We need to show that for any € > 0, we can find an N such that
n?+1
Investigating the condition further we see that we require
2 2
n‘+1—(n°—1)
R ' <e€ (1.33)
2
n2—1‘ <e€ (1.34)

Since we are interested in the limit as n — oo it is reasonable to assume that n > 1. Thus we may

drop the absolute value signs which gives

2
n?—-1>=%
€

2
= n>4/1+4+ — taking the positive root since n > 1
€

Now set N = /1 + 2/e meaning that for n > N we have

n?+1
n?—1

—1‘<6

proving the assumed limit of 1 is correct.

(1.35)

(1.36)

(1.37)
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(b) We must show that for any € > 0 we can find a § such that

lt—2<é = |Bzx—1)—5<e

Investigating the condition further, see that require

|3x — 6] < €
= |r—2/<e€/3

So if we set 6 = ¢/3 we have

|z —2| < ¢

=z —2|<e€/3
= 3z —6] <€
=|Br—1)—5|<e

as required to prove
lim(3z—1) =5

T—2
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Example 1.5 - Limits of Piecewise Functions

Do the following limits exist?

()

(b)

lim | sin 2|

z—7/2 sinzx

(1.46)

(1.47)

(a) Since the function changes form either side of the limit, we must evaluate the left and right-sided

limits separately. The left sided limit is

xT

lim — = lim =1
z—0~ ’CL‘| z—0~ (—I)
The right-sided limit is
. x . X
lim — = lim — =1
z—07F ‘IL’| z—0~" T
Since these don’t match, the limit does not exist.
(b) Left-sided limit
lim |si'n2a:\ — lim siT12x _0_ 0
r—m/2- SINX z—m/2- SINXT 1
Right-sided limit
| sin 2| ) —sin2x 0
- = llm —_— = - = 0
z—m/2+ SInx z—m/2+  SInx 1

And so the limit does exist.f

"In fact, we can go further and say the function is continuous here since f(7/2) = 0 as well.

(1.48)

(1.49)

(1.50)

(1.51)
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2 Continuity

Know definition of continuity

Evaluate continuity at points in piecewise functions

Know different types of discontinuity (removable, infinite, jump)

Use the IVT to determine existence of roots

Example 2.1 - Evaluating continuity of piecewise funtions

Sketch the following functions and at each discontinuity, state whether f is (left / right) continuous and
the type of discontinuity.

(a)
—224+1 z<1
flz)=<=x 1<zx<2 (2.1)
ﬁ x> 2
(b)
2+1 x<0
g(x) =140 r=0 (2.2)
CoS (%) x>0
(a) Sketch:
f(x)
6 —
g

2 Z1 I g 2 3 4
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- Discontinuities occur at £ = 1 and x = 2.

- Around z =1
lim f(z) =0, lim f(z) =1, f)y=1 (2.3)
z—1— z—1+

Therefore f is right-continuous at = 1 and there is a jump discontinuity here.

- Around x =2
lim f(x) =2, lim f(x)= oo, f(2)=2 (2.4)

T2~ z—21

Therefore f is left-continuous at x = 2 and there is an infinite discontinuity here.

(b) Sketch:

9(x)

- Around z =0
lim g(z) =1, lim g(z) =1, g(0)=0 (2.5)
z—0~ z—0t
Therefore g(x) is neither continuous from the right or the left at x = 0. The point x = 0 is a
removable singularity since the left and right limits are equal.



2 CONTINUITY 11

Example 2.2 - The Intermediate Value Theorem

(a) Show that

27
= 2

f) = o (2:6)

takes on the value 0.32.
(b) Show that

e +hx=0 (2.7)

has a solution.
(a) - Recall IVT: If a function f is continuous on the closed interval [a,b], then for any number M

that lies in between f(a) and f(b), there ezists a ¢ € (a,b) such that f(c) = M.

- This function is continuous on the interval [0, 1].

- f(0) =0, f1) = 0.5
- Since 0.32 lies between f(0) and f(1), and f is continuous on this interval, there exists a ¢ such
that f(c) = 0.32 by the IVT.

(b) - Let f(x) = e® +Inz. Note that f is continuous for z > 0.
- Pick some values...f(1) = e >0
- £(1/100) = €'/1% —1n(100) < 0. (Just pick any value that makes f < 0.)
- Now by the IVT there exists a ¢ € [1/100, 1] such that f(c) =0

- 1.e there exists a solution to e* +Inxz = 0.




