Examples 4: Limits and Continuity

October 10, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

1 Limits

- Solve limit problems using standard limit rules.
- Solve limit problems using the definition of a limit
- Practise applying the Squeeze Theorem
- Investigate existence of limits for piecewise functions

^{*}Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

Example 1.1 - true / false statements

Warm up with the following true / false statements

(a) If f is continuous at a,

$$\lim_{x \to a} f(x) = f(a) \tag{1.1}$$

(b) The limit

$$\lim_{n \to \infty} \frac{1}{n^p} = 0 \tag{1.2}$$

for any $p \in \mathbb{R}$.

(c) The limit

$$\lim_{x \to \infty} \left(\sin^2(\sqrt{x}) + \cos^2(\sqrt{x}) \right) \tag{1.3}$$

does not exist.

(d) Suppose

$$g(x), h(x) \to 5$$
 as $x \to \infty$ (1.4)

and
$$g(x) \le f(x) \le h(x)$$
 (1.5)

Then

$$\lim_{x \to \infty} f(x) = 5 \tag{1.6}$$

(a) True. This is very useful, since it tells us that when evaluating the limit of a function at a point where it is continuous, we may just plug the value in. For example

$$\lim_{x \to 2} \frac{x^2 + 3}{x - 1} = \frac{4 + 3}{2 - 1} = 7 \tag{1.7}$$

(b) False. This limit is only satisfied for p > 0. Note that

$$\lim_{n \to \infty} \frac{1}{n^p} = \begin{cases} 0 & p > 0\\ 1 & p = 0\\ \infty & p < 0 \end{cases}$$

$$(1.8)$$

(c) False. Since

$$\sin^2(f(x)) + \cos^2(f(x)) = 1 \tag{1.9}$$

for any function f(x). Any limit of a constant is just itself, so in this case the limit is 1.

(d) *True*. This is an example of the Squeeze Theorem.

Example 1.2 - Limits with an "indeterminate form"

Evaluate the following limits

(a)

$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} \tag{1.10}$$

(b)

$$\lim_{x \to \infty} \sqrt{x^2 + 2x} - x \tag{1.11}$$

(a) Upon substituting 3 into the expression we see this limit has the indeterminate form "0/0". Rewriting the function, we have

$$\frac{x^2 - 2x - 3}{x - 3} = \frac{(x - 3)(x + 1)}{x - 3} \tag{1.12}$$

$$= x + 1$$
 provided that $x \neq 3$ (1.13)

Note in taking the limit we get arbitrarily close to x=3 but never actually attain it, hence we may cancel the factors of (x-3). Finally,

$$\lim_{x \to 3} x + 1 = 4 \tag{1.14}$$

(b) This has the indeterminate form " $\infty - \infty$ ". We get around this by converting the expression into a ratio:

$$\sqrt{x^{2} + 2x} - x = \frac{(\sqrt{x^{2} + 2x} - x)(\sqrt{x^{2} + 2x} + x)}{\sqrt{x^{2} + 2x} + x}$$

$$= \frac{2x}{\sqrt{x^{2} + 2x} + x}$$
 multiply out numerator (1.16)

$$= \frac{2x}{\sqrt{x^2 + 2x} + x} \qquad \text{multiply out numerator} \tag{1.16}$$

$$= \frac{2}{\sqrt{1 + \frac{2}{x} + 1}} \qquad \text{divide by highest power} \tag{1.17}$$

Now the limit is fairly simple

$$\lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{2}{x} + 1}} = \frac{2}{\sqrt{1} + 1} = 1 \tag{1.18}$$

Example 1.3 - Application of the Squeeze Theorem

Evaluate the following limits

$$\lim_{x \to \infty} e^{-0.1x} \sin x \tag{1.19}$$

$$\lim_{x \to 0} x^2 e^{\cos(\frac{1}{x})} \tag{1.20}$$

(a) We use the fact that $\sin x$ is bounded:

$$-1 \le \sin x \le 1 \tag{1.21}$$

$$\Rightarrow -e^{-0.1x} \le e^{-0.1x} \sin x \le e^{-0.1x} \quad \text{since } e^{-0.1x} > 0$$
 (1.22)

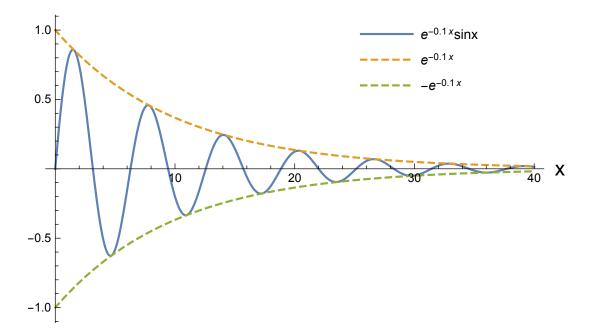
Now

$$\lim_{x \to \infty} -e^{-0.1x} = \lim_{x \to \infty} e^{-0.1x} = 0 \tag{1.23}$$

and so by the Squeeze Theorem we must have

$$\lim_{x \to \infty} e^{-0.1x} \sin x = 0 \tag{1.24}$$

(This represents an oscillation with exponentially decaying amplitude)



(b) Now use the fact that cos(1/x) is bounded:

$$-1 \le \cos(1/x) \le 1\tag{1.25}$$

$$\Rightarrow e^{-1} \le e^{\cos(\frac{1}{x})} \le e \qquad \text{(since } e^x \text{ is an increasing function we may do this)} \tag{1.26}$$

$$\Rightarrow x^2 e^{-1} \le x^2 e^{\cos(\frac{1}{x})} \le x^2 e \tag{1.27}$$

The outside limits are

$$\lim_{x \to 0} x^2 e^{-1} = \lim_{x \to 0} x^2 e = 0 \tag{1.28}$$

and so by the Squeeze Theorem,

$$\lim_{x \to 0} x^2 e^{\cos(\frac{1}{x})} = 0 \tag{1.29}$$

Example 1.4 - Limits from first principles

Prove the following, using the definition of a limit

(a)

$$\lim_{n \to \infty} \frac{n^2 + 1}{n^2 - 1} = 1 \tag{1.30}$$

(b)

$$\lim_{x \to 2} (3x - 1) = 5 \tag{1.31}$$

(a) We need to show that for any $\epsilon > 0$, we can find an N such that

$$n > N \quad \Rightarrow \quad \left| \frac{n^2 + 1}{n^2 - 1} - 1 \right| < \epsilon.$$
 (1.32)

Investigating the condition further we see that we require

$$\left| \frac{n^2 + 1 - (n^2 - 1)}{n^2 - 1} \right| < \epsilon \tag{1.33}$$

$$\Rightarrow \left| \frac{2}{n^2 - 1} \right| < \epsilon \tag{1.34}$$

Since we are interested in the limit as $n \to \infty$ it is reasonable to assume that n > 1. Thus we may drop the absolute value signs which gives

$$n^2 - 1 > \frac{2}{\epsilon} \tag{1.35}$$

$$\Rightarrow n > \sqrt{1 + \frac{2}{\epsilon}}$$
 taking the positive root since $n > 1$ (1.36)

Now set $N = \sqrt{1 + 2/\epsilon}$ meaning that for n > N we have

$$\left| \frac{n^2 + 1}{n^2 - 1} - 1 \right| < \epsilon \tag{1.37}$$

proving the assumed limit of 1 is correct.

(b) We must show that for any $\epsilon>0$ we can find a δ such that

$$|x-2| < \delta \quad \Rightarrow \quad |(3x-1)-5| < \epsilon.$$
 (1.38)

Investigating the condition further, see that require

$$|3x - 6| < \epsilon \tag{1.39}$$

$$|3x - 6| < \epsilon \tag{1.39}$$

$$\Rightarrow |x - 2| < \epsilon/3 \tag{1.40}$$

So if we set $\delta = \epsilon/3$ we have

$$|x - 2| < \delta \tag{1.41}$$

$$\Rightarrow |x - 2| < \epsilon/3 \tag{1.42}$$

$$\Rightarrow |3x - 6| < \epsilon \tag{1.43}$$

$$\Rightarrow |(3x-1)-5| < \epsilon \tag{1.44}$$

as required to prove

$$\lim_{x \to 2} (3x - 1) = 5 \tag{1.45}$$

Example 1.5 - Limits of Piecewise Functions

Do the following limits exist?

(a)

$$\lim_{x \to 0} \frac{x}{|x|} \tag{1.46}$$

(b)

$$\lim_{x \to \pi/2} \frac{|\sin 2x|}{\sin x} \tag{1.47}$$

(a) Since the function changes form either side of the limit, we must evaluate the left and right-sided limits separately. The left sided limit is

$$\lim_{x \to 0^{-}} \frac{x}{|x|} = \lim_{x \to 0^{-}} \frac{x}{(-x)} = -1 \tag{1.48}$$

The right-sided limit is

$$\lim_{x \to 0^+} \frac{x}{|x|} = \lim_{x \to 0^-} \frac{x}{x} = 1 \tag{1.49}$$

Since these don't match, the limit does not exist.

(b) Left-sided limit

$$\lim_{x \to \pi/2^{-}} \frac{|\sin 2x|}{\sin x} = \lim_{x \to \pi/2^{-}} \frac{\sin 2x}{\sin x} = \frac{0}{1} = 0$$
 (1.50)

Right-sided limit

$$\lim_{x \to \pi/2^{+}} \frac{|\sin 2x|}{\sin x} = \lim_{x \to \pi/2^{+}} \frac{-\sin 2x}{\sin x} = \frac{0}{1} = 0$$
 (1.51)

And so the limit does exist.[†]

[†]In fact, we can go further and say the function is continuous here since $f(\pi/2) = 0$ as well.

2 CONTINUITY 9

2 Continuity

- Know definition of continuity
- Evaluate continuity at points in piecewise functions
- Know different types of discontinuity (removable, infinite, jump)
- Use the IVT to determine existence of roots

Example 2.1 - Evaluating continuity of piecewise funtions

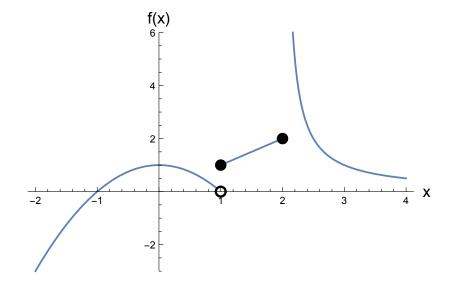
Sketch the following functions and at each discontinuity, state whether f is (left / right) continuous and the type of discontinuity.

$$f(x) = \begin{cases} -x^2 + 1 & x < 1\\ x & 1 \le x \le 2\\ \frac{1}{x - 2} & x > 2 \end{cases}$$
 (2.1)

(b)

$$g(x) = \begin{cases} x^2 + 1 & x < 0 \\ 0 & x = 0 \\ \cos\left(\frac{x}{4}\right) & x > 0 \end{cases}$$
 (2.2)

(a) Sketch:



2 CONTINUITY 10

- Discontinuities occur at x = 1 and x = 2.
- Around x = 1

$$\lim_{x \to 1^{-}} f(x) = 0, \qquad \lim_{x \to 1^{+}} f(x) = 1, \qquad f(1) = 1$$
 (2.3)

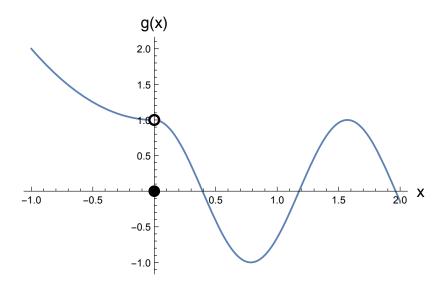
Therefore f is right-continuous at x = 1 and there is a jump discontinuity here.

- Around
$$x = 2$$

$$\lim_{x \to 2^{-}} f(x) = 2, \qquad \lim_{x \to 2^{+}} f(x) = \infty, \qquad f(2) = 2 \tag{2.4}$$

Therefore f is left-continuous at x=2 and there is an infinite discontinuity here.

(b) Sketch:



- Around
$$x = 0$$

$$\lim_{x \to 0^{-}} g(x) = 1, \qquad \lim_{x \to 0^{+}} g(x) = 1, \qquad g(0) = 0$$
 (2.5)

Therefore g(x) is neither continuous from the right or the left at x = 0. The point x = 0 is a removable singularity since the left and right limits are equal.

2 CONTINUITY 11

Example 2.2 - The Intermediate Value Theorem

(a) Show that

$$f(x) = \frac{x^7}{x^5 + 1} \tag{2.6}$$

takes on the value 0.32.

(b) Show that

$$e^x + \ln x = 0 \tag{2.7}$$

has a solution.

- (a) Recall IVT: If a function f is continuous on the closed interval [a,b], then for any number M that lies in between f(a) and f(b), there exists $a \in (a,b)$ such that f(c) = M.
 - This function is continuous on the interval [0, 1].
 - f(0) = 0, f(1) = 0.5
 - Since 0.32 lies between f(0) and f(1), and f is continuous on this interval, there exists a c such that f(c) = 0.32 by the IVT.
- (b) Let $f(x) = e^x + \ln x$. Note that f is continuous for x > 0.
 - Pick some values... f(1) = e > 0
 - $f(1/100) = e^{1/100} \ln(100) < 0$. (Just pick any value that makes f < 0.)
 - Now by the IVT there exists a $c \in [1/100, 1]$ such that f(c) = 0
 - i.e there exists a solution to $e^x + \ln x = 0$.