Examples 7
Riemann Integrals, The Fundamental Theorem of Calculus and
Integration Techniques

November 14, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.*

*Created by Thomas Bury - please send comments or corrections to tbury@uuwaterloo.ca



1 RIEMANN INTEGRALS

1 Riemann Integrals

e Compute integrals from first principles using the definition of the Riemann integral

Example 1

Calculate the following integrals as limits of Riemann sums:

(a)
/023d3:

(b)

(1.1)

2
/ 2 dx (1.2)
1
Recall the definition of the definite (Riemann) integral for a continuous function f on [a, b]:
b n
/a f(z)dx = nlggoz;f(wl)Ax (1.3)
1=
where Az = (b—a)/n, xf € [zi—1,z;] and z; = a + iAx.
We may use the following identities:
n n n n 2
B 1 o 1 3 (n(n+1)
Zl—n Zk‘—§n(n—|—1), Zk —én(n—l—l)(Qn—{—l) Zk = <2 (1.4)
k=1 k=1 k=1 k=1
(a) A diagram shows straight away that this area is 6, however let’s check that the definition agrees.
- Segment width
b— 2
Apg=-—2=-= (1.5)
n n
- Segment evaluation point x*
Choose x} = x; (right side of segment) so
0
T, =a+iAx = k) (1.6)
n

- The Riemann Sum
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= —=— 1=6 1.7
R ;3 = ; (1.7)
- Take the limit
2
/ 3dr = lim R, =6 (1.8)
0 n—0o0

Note that in this case the Riemann sum does not depend on n (the number of segments we
divide the interval up in to). This is because the area is already a rectangle!

(b) A bit harder:

- Segment width

b— 1
Ap=-""2 == (1.9)
n n
- Segment evaluation point x*
e =a+iAr =1+~ (1.10)
n
- The Riemann Sum
n
Ry =) (2})°Az (1.11)

n i 3
-3 (Hn) (i) (1.12)
EeE 5 )
_ZHiZH;iiM?;ZP(i) (1.14)

3 (1 3 (1 1 (n(n+1)\?
=14 == 1 — | = 1)(2 1 — | —— 1.1
+3 <2n(n+ )>+n3 <6n(n+ )(2n + )>+n4< 5 ) (1.15)
(1.16)
- Take the limit
2

/ 23dr = lim R, (1.17)

1 n—oo

3 1 15

=l4+-+1+-=— (1.18)

2 4 4
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2 The Fundamental Theorem of Calculus
e Take derivatives of integrals using the FTC Part I
e Compute definite integrals using the FTC Part 11
Example 2.1- derivatives of integrals
Differentiate the following functions
(a)
ZB2
flz) = / e at (2.1)
2
(b) .
f(z) = V14 t2dt (2.2)
Recall that the FTC Part I gives us the differentiation rule
L gyt = () (2.3
(a) Let u = 2% and then use the chain rule:
df  df du
XA 2.4
dr  dudx (24)
d Yo e
= — dt ) .2 2.5
du (/2 ’ ) : 29
=e 2z from the FTC 2.6)
= 2z (2.7)
(b) We break the integral up into forms that permit the FTC. Useful identities are
b c b
/ f(t)dt = / f(t)dt +/ f(t)dt (2.8)
(lb a . (&
/ F(t)dt = — / F(t)dt. (2.9)
a b
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We may therefore write
sinx
fx) = V1 + t2dt (2.10)
cosx
0 sinz
= / V14 t2dt + / V14 t2dt we could have used any constant instead of 0 (2.11)
cosx 0
cos sinz
= V1 + 2dt + V1 + t2dt (2.12)
0 0
= —/1+cos?z(—sinz) + V1 +sin®zcosx using methods from (a) (2.13)
= sinzy/1 + cos?x + coszV/ 1 +sin’x (2.14)
Example 2.2 - definite integrals
Evaluate the following:
(a)
2
/ 3dx (2.15)
1
(b)
xT
/ cost dt (2.16)
3
Recall that the FTC Part II tells us that if F'(x) is the anti-derivative of f(z), then
b
/ f(t)dt = F(a) — F(b) (2.17)
a
(a) The antiderivative of 23 is 2 so FTC II tells us
2 2
1 15
/ wdde = -zt | = (2.18)
1 4

, 4

The FTC II saves us a lot of time cf. Example 1.(a).
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(b) The antiderivative of cost is sint and so

xr
/ costdt = sint

2

T

=sinzx —1 (2.19)

us

Note that this is consistent with FTC I if we were to differentiate both sides.
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3 Integration Techniques
e Recognise even and odd integrands to save time
e Integrate piecewise-defined functions
e Use a change of variables to simplify the integral
e Employ integration by parts when appropriate
Example 3.1 - odd / even / Heaviside integrands
Evaluate the following integrals
(@ 1
/ (z* + 2?)dx (3.1)
-1
(b) ]
2 2
/ xe ¥ dx (3.2)
3
© 3
/ [2° + H(z — 2)(4 — 2°)] da (3.3)
0
Recall that for any even function f,
/ flx)dx = 2/ f(x)dx (3.4)
—a 0
and for an odd function g,
/ g(x)dxr =0 (3.5)

for any value of a. You may wish to show this algebraically or via a sketch.
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(a) The integrand is even so we can save a bit of time using the above result:

1 1
Y4 2?)de = zt + 2?)dx .
/_l(x —|—m)dm—2/0( +x7)d (3.6)
1
=2 (;f + %x?’ 0) (3.7)
St -
16

(b) This integral has an odd integrand. Since the limits are symmetrical about zero, the integral must
be zero.

(c) For integrals involving piecewise-defined integrands, separate the integral up into the corresponding

pieces:

3 2 3
/ [x2+H(x—2)(4—x2)} dr = / x2dx+/ 4 dx (3.10)

0 0 2

1.2 3
= 23| +4z (3.11)

3 o 2

8 20

= 44="" (3.12)
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Example 3.2 - The Method of Substitution
Evaluate the following integrals
(a) '
/ (1 - > cos(z — Inz)dx (3.13)
x
(b) ]
2 o
/ e™¥ cos @ db (3.14)
0
()
V3
/ 231 4 22dx (3.15)
0
Look for a simplifying substitution, ideally one whose derivative is contained in the integrand.
(a) Let u =2 —Inz. Then du = (1 — 1/x) dx and so
1
/ <1 - > cos(x —Inz) de = /cosu du (3.16)
x
=sinu+ C (3.17)
=sin(z —Inz) + C (3.18)
(b) Let uw =sinf. Then du = cos df. Don’t forget to convert the limits!
0=0=>u= 3.19)
ezg;suzl (3.20)
The integral becomes
7 1
/ e cosf df = / e'du (3.21)
0 0
ull
=e"|, (3.22)
=e—1 (3.23)




3 INTEGRATION TECHNIQUES 10

2

(c) The substitution is a bit less obvious here...simplify the square root with v = 1 + 2. The integral

becomes
V3 V3
/ x3\/1—|—:v2d33:/ 2?1+ 22z de (3.24)
0 0
4
d
_ / (u— Dyt 2" (3.25)
1 2
1 4
:/ (u%—u%)du (3.26)
2 )1
1/2 5 2 3\
=2 Zu2 — 242 2
5 <5u2 3u2) 1 (3.27)
1/2 2 2 2
= (Z32-Z8-Z24°2 2
2<53 28 5+3> (3.28)
o8
=2 2
e (3.29)
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Example 3.3 - Integration by Parts
Evaluate the following integrals
(a)
/ x cos zdx (3.30)
(b)
/$lnxd:c (3.31)
(c)
e
/ Inx dx (3.32)
1
Recall the relation we use for integration by parts:
/udv = uv — /vdu (3.33)
Hints:
- Make sure dv is something we know how to integrate
- Choose a u that simplifies upon differentiation.
(a) Let
u=z simplifies upon differentiation (3.34)
dv = cosx dz we know how to integrate 3.35)
Then
du = dx (3.36)
v=sinz (3.37)
Using (3.33), we have
/wcos xdxr = rsinx — /Sinxdx (3.38)

=zxsinz + cosx + C
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(b) [zlnzdz

Now Inz isn’t easy to integrate so we will set

u=Inz, dv =z dx
Then ] .
du = —dz, v= -z
x
And so

1 1 1
/xlnxda:: lenx—/xz.dac
2 2 =z

1 1
= §x21n:1:— 2/a:dx

1 1
= 5302111:5— ZxQ—i—C

(¢) [{Inzdx

IBP can also be useful in cases that don’t involve the explicit product of two functions. Let
u=Inz, dv = dx.

Then 1
du = —dx, v =1
x

There are boundaries to this integral, so we just carry those through into the formula:

[ e
/ lna:dx:a:lna:‘g—/ dx
1 0

=e—(e—1)
=1

12

(3.40)

(3.41)

(3.42)
(3.43)

(3.44)

(3.45)

(3.46)



