Bootcamp on nonlinear dynamics

Instructor: Thomas Bury

Supplementary reading

McGill Library

https://www.mcgill.ca/library/

View eBook

Chapters

- 1 FINITE-DIFFERENCE EQUATIONS
- 4 ONE-DIMENSIONAL DIFFERENTIAL EQUATIONS
- 5 TWO-DIMENSIONAL DIFFERENTIAL EQUATIONS

Chapters

- 1 Theoretical Approaches in Physiology Michael C. Mackey and Anne Beuter
- 5 Resetting and Entraining Biological Rhythms Leon Glass

A few biological applications...

Infections disease modelling¹

$$egin{aligned} rac{dS}{dt} &= -rac{eta IS}{N}, \ rac{dI}{dt} &= rac{eta IS}{N} - \gamma I, \ rac{dR}{dt} &= \gamma I. \end{aligned}$$

Oncology²

$$\begin{split} &\frac{\delta m}{\delta t} = D_m \, \nabla^2 m + \mu n_{i,j} - \lambda m, \\ &\frac{\delta f}{\delta t} = -\delta m f, \\ &\frac{\delta c}{\delta t} = D_c \, \nabla^2 m + \beta f - \gamma n_{i,j} c - \alpha c. \end{split}$$

Physiology and neuroscience³

$$\frac{dV}{dt} = V(V - a)(V - 1) - W - I_{app}$$

$$\frac{dW}{dt} = \epsilon(V - \gamma W)$$

Ecology and evolution⁴

$$x_{n+1}=rx_n(1-x_n)$$

¹Anderson, Roy M., and Robert M. May. *Infectious diseases of humans: dynamics and control*. Oxford university press, 1992.

²Anderson, Alexander RA, and Vito Quaranta. "Integrative mathematical oncology." *Nature Reviews Cancer* 8.3 (2008): 227-234.

³Glass, Leon, and Michael C. Mackey. From clocks to chaos. Princeton University Press, 2020.

⁴Levin, Simon A., Thomas G. Hallam, and Louis J. Gross, eds. *Applied mathematical ecology*. Vol. 18. Springer Science & Business Media, 2012

Agenda

Part I: Difference equations

- Linear difference equations
 - Algebraic solutions
 - Cobweb diagrams
- Nonlinear difference equations
 - Logistic map
 - Bifurcations and chaos

$$x_{t+1} = f(x_t)$$

Part II: Differential equations

- Comparison with difference equations
- Numerical analysis

$$\frac{dx}{dt} = f(x)$$

Difference equation

$$x_{t+1} = f(x_t)$$
 vs.

 x_t Number of flies caught the summer of year t (Depends mostly on number of eggs laid in the previous year)

(Kaplan & Glass)

Figure 1.1 The number of flies caught during the annual fly survey.

Differential equation

$$\frac{dx}{dt} = f(x)$$

x(t) World population at time t (Depends on continuous birth and death rates)

www.populationmatters.org/population-numbers

 $x_{t+1} = f(x_t)$

Part I

Difference equations

Linear difference equation

$$x_{t+1} = rx_t$$

How can we solve this?

Let's say we have 100 flies at t=0

$$x_0 = 100$$

Then...

$$x_1 = rx_0 = 100r$$

 $x_2 = rx_1 = 100r^2$
 $x_3 = rx_2 = 100r^3$
:

Solution:

$$x_t = r^t x_0$$

Case r > 1

$$x_{t+1} = rx_t$$
$$x_t = r^t x_0$$

Exponential growth

as
$$t \to \infty$$
 ?
$$x_t \to \infty$$

Case 0 < r < 1

$$x_{t+1} = rx_t$$
$$x_t = r^t x_0$$

Exponential decay

as
$$t \to \infty$$
?

$$x_t \to 0$$

$$x_t = 100.(0.5^t)$$

Case r=1

$$x_{t+1} = rx_t$$
$$x_t = r^t x_0$$

$$x_t = 100.(1^t)$$

 x_t

150▲

Case -1 < r < 0

$$x_{t+1} = rx_t$$
$$x_t = r^t x_0$$

Oscillatory decay

as
$$t \to \infty$$
?
$$x_t \to 0$$

Case r < -1

$$x_{t+1} = rx_t$$
$$x_t = r^t x_0$$

Oscillatory growth

as
$$t \to \infty$$
?

$$x_t \to \pm \infty$$

$$x_t = 100.(-2)^t$$

Case r = -1

$$x_{t+1} = rx_t$$
$$x_t = r^t x_0$$

Periodic cycle (period 2)

as
$$t \to \infty$$
? $x_t \to \pm x_0$

$$x_t = 100.(-1)^t$$

Graphical iteration - cobweb plots

Analytic solution can intractable - graphical iteration provides a quick qualitative description

Graphical iteration - cobweb plots

Try these...

Describe the qualitative behaviour that you observe

Try these...

Describe the qualitative behaviour that you observe

Nonlinear difference equations

(Kaplan & Glass)

Figure 1.1 The number of flies caught during the annual fly survey.

Simplify with substitution $\ x_t = \frac{b}{R} N_t$

Gives
$$x_{t+1} = r(1-x_t)x_t$$

Is the linear difference equation

$$N_{t+1} = rN_t$$

a good model for population dynamics?

Assumes growth rate per capita is fixed

However, as N_t gets big, resources become limited...

$$N_{t+1} = (r - bN_t)N_t$$

Logistic map

The logistic map

$$x_{t+1} = r(1 - x_t)x_t$$

Dynamics vary as a function of r

At what values of r do the dynamics qualitatively change (bifurcations)?

Two important features of nonlinear dynamics: equilibria and stability

Equilibria of a difference equation $x_{t+1} = f(x_t)$

 x^* is an equilibrium of the difference equation if and only if

$$x^* = f(x^*)$$

E.g. logistic map:

$$x^* = rx^*(1 - x^*)$$

Quadratic equation with roots:

$$x^* = 0 \qquad x^* = \frac{r-1}{r}$$

Latter is biologically plausible for

(intersection of lines y=f(x) and y=x)

Stability of equilibria

 x^* is a stable equilibrium if

$$|f'(x^*)| < 1$$

and unstable if

$$|f'(x^*)| > 1$$

 $|f'(x^*)| = 1$ is inconclusive

Linear difference equation

$$\epsilon_{t+1} = r\epsilon_t$$

describes the nearby dynamics

(gradient of y=f(x) at intersection with y=x)

MATLAB exercise

Investigate the dynamics of the logistic map at different values of r

$$x_{t+1} = r(1 - x_t)x_t$$

Code: https://cnd.mcgill.ca/ebook/index.html or myCourses

quadmap.m

fditer.m

cobweb.m

bifurc.m

Iterate the logistic map N times

```
y=fditer('quadmap', x0, r, N)
plot(y,'+')
```

Make a cobweb plot for N iterations

```
cobweb('quadmap', x0, r, N)
```

Plot long-term dynamics as a function of r (bifurcation diagram)

```
bifurc('quadmap', rmin, rmax)
```

Chaos

- Bounded
- Aperiodic
- Sensitive to initial conditions
- Deterministic

https://geoffboeing.com/2015/03/chaos-theory-logistic-map/

Fractal structure (self-similar)

One-to-one map with Mandelbrot set:

Set
$$z_t = r(1/2 - x_t)$$

$$\vdots$$

$$z_{t+1} = z_t^2 + C$$

$$C = \frac{r}{2} \left(1 - \frac{r}{2} \right)$$

https://geoffboeing.com/2015/03/chaos-theory-logistic-map/

$\frac{dx}{dt} = f(x)$

Part II

Differential equations

Linear differential equations

$$\frac{dx}{dt} = cx \qquad x(t) = x_0 e^{ct}$$

x(t) varies continuously with t

c > 0

Exponential growth

c < 0

Exponential decay

c = 0

Steady state / Fixed point

What about oscillatory dynamics? Not possible in 1D!

Phase plane analysis

Analytic solution can intractable - phase plane provides a quick qualitative description

Can you guess the requirements for equilibria and stability based on this?

Equilibria and stability

 \boldsymbol{x}^* is an equilibrium of the differential equation

$$\frac{dx}{dt} = f(x)$$
 if and only if

f(x)

$$f(x^*) = 0$$

 x^* is stable if

$$f'(x^*) < 0$$

 x^* is unstable if

$$f'(x^*) > 0$$

E.g. continuous time logistic equation

$$\frac{dx}{dt} = rx(1-x)$$

No oscillations (requires 2D) No chaos (requires 3D)

Numerical solution

An approximation, unlike for discrete-time simulation which is exact.

$$\frac{dx}{dt} = f(x)$$

Take a small Δt

Then
$$\frac{\Delta x}{\Delta t} \approx f(x)$$

$$\Delta x \approx f(x) \Delta t$$

Arrive at Euler's method

$$x_{t+1} = x_t + f(x_t)\Delta t$$

Example
$$\frac{dx}{dt} = 1 - x$$

Choose Δt

- small enough such that dynamics stay close to true solution
- not so small that the simulation becomes too computationally costly

(courtesy of Niklas Brake)

MATLAB exercise

Fitzhugh-Nagumo equations

$$\frac{dv}{dt} = -v(v-a)(v-1) - w + I_{app}$$

$$\frac{dw}{dt} = \epsilon(bv + d - cw)$$

Describe the trajectory of v based on its initial condition

Describe the qualitative changes that occur upon increasing lapp

Physiological interpretation?

